Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 72(12): 3985-3999, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37847301

RESUMO

There is evidence that the orphan nuclear receptor 4A1 (NR4A1, Nur77) is overexpressed in exhausted CD8 + T cells and regulates PD-L1 in tumors. This study investigated the effects of potent bis-indole-derived NR4A1 antagonists on reversing T-cell exhaustion and downregulating PD-L1 in colon tumors/cells. NR4A1 antagonists inhibited colon tumor growth and downregulated expression of PD-L1 in mouse colon MC-38-derived tumors and cells. TILs from MC-38 cell-derived colon tumors and splenic lymphocytes exhibited high levels of the T-cell exhaustion markers including PD-1, 2B4, TIM3+ and TIGIT and similar results were observed in the spleen, and these were inhibited by NR4A1 antagonists. In addition, treatment with NR4A1 antagonists induced cytokine activation markers interferon γ, granzyme B and perforin mRNAs and decreased TOX, TOX2 and NFAT in TIL-derived CD8 + T cells. Thus, NR4A1 antagonists decrease NR4A1-dependent pro-oncogenic activity and PD-L1 expression in colon tumors and inhibit NR4A1-dependent T-cell exhaustion in TILs and spleen and represent a novel class of mechanism-based drugs that enhance immune surveillance in tumors.


Assuntos
Antígeno B7-H1 , Neoplasias do Colo , Animais , Camundongos , Exaustão das Células T , Baço , Neoplasias do Colo/tratamento farmacológico , Linfócitos T CD8-Positivos , Indóis/farmacologia
2.
Cells ; 12(4)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36831193

RESUMO

Conjugated bile acids (BA) are significantly elevated in several liver pathologies and in the metastatic lymph node (LN). However, the effects of BAs on pathological lymphangiogenesis remains unknown. The current study explores the effects of BAs on lymphangiogenesis. BA levels were elevated in the LN and serum of Mdr2-/- mice (model of sclerosing cholangitis) compared to control mice. Liver and LN tissue sections showed a clear expansion of the lymphatic network in Mdr2-/- mice, indicating activated lymphangiogenic pathways. Human lymphatic endothelial cells (LECs) expressed BA receptors and a direct treatment with conjugated BAs enhanced invasion, migration, and tube formation. BAs also altered the LEC metabolism and upregulated key metabolic genes. Further, BAs induced the production of reactive oxygen species (ROS), that in turn phosphorylated the redox-sensitive kinase p90RSK, an essential regulator of endothelial cell dysfunction and oxidative stress. Activated p90RSK increased the SUMOylation of the Prox1 transcription factor and enhanced VEGFR3 expression and 3-D LEC invasion. BA-induced ROS in the LECs, which led to increased levels of Yes-associated protein (YAP), a lymphangiogenesis regulator. The suppression of cellular YAP inhibited BA-induced VEGFR3 upregulation and lymphangiogenic mechanism. Overall, our data shows the expansion of the lymphatic network in presclerotic liver disease and establishes a novel mechanism whereby BAs promote lymphangiogenesis.


Assuntos
Linfangiogênese , Fator A de Crescimento do Endotélio Vascular , Camundongos , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Esteroides/metabolismo , Ácidos e Sais Biliares/metabolismo
3.
Cells ; 10(11)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34831316

RESUMO

Cholangiocarcinoma (CCA), or cancer of bile duct epithelial cells, is a very aggressive malignancy characterized by early lymphangiogenesis in the tumor microenvironment (TME) and lymph node (LN) metastasis which correlate with adverse patient outcome. However, the specific roles of lymphatic endothelial cells (LECs) that promote LN metastasis remains unexplored. Here we aimed to identify the dynamic molecular crosstalk between LECs and CCA cells that activate tumor-promoting pathways and enhances lymphangiogenic mechanisms. Our studies show that inflamed LECs produced high levels of chemokine CXCL5 that signals through its receptor CXCR2 on CCA cells. The CXCR2-CXCL5 signaling axis in turn activates EMT (epithelial-mesenchymal transition) inducing MMP (matrix metalloproteinase) genes such as GLI, PTCHD, and MMP2 in CCA cells that promote CCA migration and invasion. Further, rate of mitochondrial respiration and glycolysis of CCA cells was significantly upregulated by inflamed LECs and CXCL5 activation, indicating metabolic reprogramming. CXCL5 also induced lactate production, glucose uptake, and mitoROS. CXCL5 also induced LEC tube formation and increased metabolic gene expression in LECs. In vivo studies using CCA orthotopic models confirmed several of these mechanisms. Our data points to a key finding that LECs upregulate critical tumor-promoting pathways in CCA via CXCR2-CXCL5 axis, which further augments CCA metastasis.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Quimiocina CXCL5/metabolismo , Colangiocarcinoma/metabolismo , Sistema Linfático/patologia , Receptores de Interleucina-8B/metabolismo , Transdução de Sinais , Animais , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Movimento Celular , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Células Endoteliais/patologia , Metabolismo Energético , Transição Epitelial-Mesenquimal/genética , Adesões Focais/metabolismo , Regulação Neoplásica da Expressão Gênica , Glucose/metabolismo , Humanos , Inflamação/genética , Inflamação/patologia , Ácido Láctico/biossíntese , Linfonodos/patologia , Linfangiogênese/genética , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
4.
Indian J Surg Oncol ; 12(Suppl 1): 93-102, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33994734

RESUMO

Head and neck cancers (HNC) are extremely aggressive, highly recurrent, and the sixth most common cancer worldwide. Neuropeptide substance P, along with its primary receptor, neurokinin-1 (NK-1R), is overexpressed in HNC and is a central player in inflammation and growth and metastasis of several cancers. However, the precise SP-mediated signaling that promotes HNC progression remains ill defined. Using a panel of HNC lines, in this study, we investigated the effects of SP on proliferation and migration of HNC. Tumor cells were also treated with SP and alterations in inflammatory cytokines and chemokines, and their cognate receptors were analyzed by real-time PCR. Furthermore, we investigated the role of SP in inducing epithelial-mesenchymal transition (EMT), and matrix metalloproteases that promote tumor invasion. Our results showed that SP significantly increased tumor cell proliferation and migration and induced the expression of several genes that promote tumor growth, invasion, and metastasis which was suppressed by a specific NK1R antagonist L-703606. SP also activated NFκB that was suppressed on inhibiting NK1R. Collectively, our data shows that SP-NK1R-mediated inflammatory signaling comprises an important signaling axis in promoting HNC and may prove to be effective clinical target against HNC cells that are resistant to traditional therapy.

5.
Life Sci ; 271: 119149, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33549596

RESUMO

Drug resistance in cancer, still poses therapeutic challenges and tumor microenvironment plays a critical role in it. Microvesicles (MVs) are effective transporters of the molecular information between cells and regulate the tumor microenvironment. They contribute to the drug resistance by transferring functional molecules between cells. Herein we report the effects of liver cancer cell-secreted MVs on sorafenib resistance in liver cancer cells HepG2 and Huh7 both in vitro and in vivo. In our study, these cancer cell-secreted MVs affected the anti-proliferative effect of sorafenib in a dose- and time-dependent manner and also inhibited the sorafenib induced apoptosis in vitro. Further, in in-vivo xenograft mice models, liver cancer cell-secreted MVs increased the tumor volume even after sorafenib treatment. Further, HGF, also got elevated in liver cancer cell-secreted MVs treatment group and activated Ras protein expression. miR-25 in the cancer cell-secreted MVs was transferred to their host cells HepG2 and Huh7 cells and reversed the sorafenib induced expression of tumor suppressor p53. This in turn induced the expression of FOXM1, a key regulator of cell cycle progression and thus affected the anti-proliferative effect of sorafenib. Therefore, this study reveals that liver cancer cell-derived MVs can mediate sorafenib resistance in the liver cancer cells, suggesting that these MVs may not be utilized as vehicles for anti-cancer drug delivery in liver cancer treatments.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Proteína Forkhead Box M1/biossíntese , Neoplasias Hepáticas/metabolismo , Sorafenibe/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Sorafenibe/uso terapêutico , Proteína Supressora de Tumor p53/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
6.
Am J Physiol Cell Physiol ; 319(6): C1045-C1058, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33052069

RESUMO

Lymphangiogenesis, or formation of new lymphatic vessels, is a tightly regulated process that is controlled by growth factor signaling and biomechanical cues. Lymphatic endothelial cells (LECs) undergo remodeling, migration, and proliferation to invade the surrounding extracellular matrix (ECM) during both physiological and pathological lymphangiogenesis. This study optimized conditions for an in vitro three-dimensional (3-D) collagen-based model that induced LEC invasion and recapitulated physiological formation of lymphatic capillaries with lumens. Invasion of LECs was enhanced in the presence of sphingosine 1-phosphate (S1P). Effects of various known lymphangiogenic factors, vascular endothelial growth factor (VEGF)-A, basic fibroblast growth factor (bFGF), interleukin (IL)-8, and hepatocyte growth factor (HGF), were tested on LEC sprout formation synergistically with VEGF-C. Several of these growth factors significantly enhanced LEC invasion, and synergistic effects of some of these further enhanced the sprouting density and lumen volume. To determine the contribution of specific ECM components, we analyzed the expression of different integrin subunits. Basal expressions of the integrin α5- and integrin ß1-subunits were high in LECs. The addition of fibronectin, which mediates cellular responses through these integrins, enhanced LEC sprouting density and sprout length dose-dependently. siRNA-mediated knockdown of the integrin ß1-subunit suppressed LEC invasion and also inhibited VEGF receptor (VEGFR)3 and ERK activation. Furthermore, exposing LECs to the inflammatory mediator lipopolysaccharide (LPS) inhibited sprouting. This optimized model for LEC invasion includes S1P, VEGF-C, and fibronectin within a 3-D collagen matrix, along with VEGF-C, VEGF-A, bFGF, and HGF in the culture medium, and provides a useful tool to investigate the functional effect of various lymphangiogenic factors and inhibitors.


Assuntos
Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Integrina beta1/metabolismo , Linfangiogênese/fisiologia , Vasos Linfáticos/citologia , Linhagem Celular , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fibronectinas/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Integrina beta1/genética , Interleucina-8/metabolismo , Lipopolissacarídeos , Lisofosfolipídeos/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
7.
Exp Biol Med (Maywood) ; 245(13): 1073-1086, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32594767

RESUMO

IMPACT STATEMENT: Hypoxia contributes to tumor aggressiveness and promotes growth of many solid tumors that are often resistant to conventional therapies. In order to achieve successful therapeutic strategies targeting different cancer types, it is necessary to understand the molecular mechanisms and signaling pathways that are induced by hypoxia. Aberrant tumor vasculature and alterations in cellular metabolism and drug resistance due to hypoxia further confound this problem. This review focuses on the implications of hypoxia in an inflammatory TME and its impact on the signaling and metabolic pathways regulating growth and progression of cancer, along with changes in lymphangiogenic and angiogenic mechanisms. Finally, the overarching role of hypoxia in mediating therapeutic resistance in cancers is discussed.


Assuntos
Hipóxia Celular/fisiologia , Neoplasias/patologia , Microambiente Tumoral/fisiologia , Respiração Celular/fisiologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neoplasias/metabolismo
8.
Exp Cell Res ; 392(2): 112040, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32380039

RESUMO

Safe and efficient intracellular delivery of CRISPR/Cas9 is a key step for effective therapeutic genome editing in a wide range of diseases. This remains challenging due to multiple drawbacks of the currently available vehicles. Here we report that epithelial cell -derived microvesicles (MVs) function as safe and natural carriers for efficient delivery of CRISPR/Cas9 to treat cancer. In our study, compared to epithelial cell -derived MVs, cancer -derived MVs were quickly absorbed intracellularly by recipient cancer cells in vitro and showed selective accumulation in tumors of HepG2 xenografts in vivo, due to their cancer cell tropism dependent targeting. Surprisingly, synergistic anti-tumor effect of sgIQ 1.1 loaded Cas9MVs/HEK293 + sorafenib was better than sgIQ 1.1 + Cas9MVs/HepG2 + sorafenib in vitro. In addition, qPCR results showed that miR-21 and miR-181a expression were upregulated in HepG2 cells treated with cancer cell -derived MVs that might support the cancer progression. Further, treatment of HepG2 xenografts with sgIQ 1.1 loaded Cas9MVs/HEK293 showed enhanced anti-cancer effect than sgIQ 1.1 + Cas9MVs/HepG2. Therefore, we conclude that normal cells -derived MVs can act as better and safe natural delivery systems for cancer therapeutics in the future.


Assuntos
Sistemas CRISPR-Cas , Carcinoma Hepatocelular/terapia , Micropartículas Derivadas de Células/patologia , Células Epiteliais/patologia , Neoplasias Hepáticas/terapia , Sorafenibe/farmacologia , Proteínas Ativadoras de ras GTPase/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Apoptose , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proliferação de Células , Micropartículas Derivadas de Células/metabolismo , Terapia Combinada , Células Epiteliais/metabolismo , Feminino , Edição de Genes , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Ativadoras de ras GTPase/genética
9.
Am J Pathol ; 190(4): 900-915, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32035061

RESUMO

Tumor metastasis to the draining lymph nodes is critical in patient prognosis and is tightly regulated by molecular interactions mediated by lymphatic endothelial cells (LECs). The underlying mechanisms remain undefined in the head and neck squamous cell carcinomas (HNSCCs). Using HNSCC cells and LECs we determined the mechanisms mediating tumor-lymphatic cross talk. The effects of a pentacyclic triterpenoid, methyl 2-trifluoromethyl-3,11-dioxoolean-1,12-dien-30-oate (CF3DODA-Me), a potent anticancer agent, were studied on cancer-lymphatic interactions. In response to inflammation, LECs induced the chemokine (C-X-C motif) ligand 9/10/11 chemokines with a concomitant increase in the chemokine (C-X-C motif) receptor 3 (CXCR3) in tumor cells. CF3DODA-Me showed antiproliferative effects on tumor cells, altered cellular bioenergetics, suppressed matrix metalloproteinases and chemokine receptors, and the induction of CXCL11-CXCR3 axis and phosphatidylinositol 3-kinase/AKT pathways. Tumor cell migration to LECs was inhibited by blocking CXCL11 whereas recombinant CXCL11 significantly induced tumor migration, epithelial-to-mesenchymal transition, and matrix remodeling. Immunohistochemical analysis of HNSCC tumor arrays showed enhanced expression of CXCR3 and increased lymphatic vessel infiltration. Furthermore, The Cancer Genome Atlas RNA-sequencing data from HNSCC patients also showed a positive correlation between CXCR3 expression and lymphovascular invasion. Collectively, our data suggest a novel mechanism for cross talk between the LECs and HNSCC tumors through the CXCR3-CXCL11 axis and elucidate the role of the triterpenoid CF3DODA-Me in abrogating several of these tumor-promoting pathways.


Assuntos
Quimiocina CXCL11/metabolismo , Células Endoteliais/patologia , Neoplasias de Cabeça e Pescoço/patologia , Inflamação/patologia , Receptores CXCR3/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/secundário , Antineoplásicos/farmacologia , Quimiocina CXCL11/genética , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Transição Epitelial-Mesenquimal , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/metabolismo , Metástase Linfática , Prognóstico , Receptores CXCR3/genética , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Triterpenos/farmacologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...